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1. Introduction 
 

Optical solitons is one of the most fascinating areas 

of research in nonlinear fibers optics. There are several 

kinds of solitons that are retrieved from the model that 

governs this study. These are bright, dark and singular 

solitons. Several results are reported in this context. 

Additionally several integration techniques are applied 

to retrieve these results. These include Lie symmetry, 

G’/G-expansion, traveling wave hypothesis, semi-

inverse variational principle and several others. 

Therefore, changing gears, this paper focuses on solitons 

with quadratic nonlinear medium. While a plethora of 

results already exists, this paper focuses on this topic by 

Lie symmetry analysis for the first time [1-20].  

The nonlinear effect in quadratic media is the form 

of second harmonic generation (SHG). The pump wave 

at the fundamental harmonic (FH) generates a second 

harmonic (SH) with double frequency [1, 15]. This SHG 

phenomena is derivable from Maxwell’s equation with 

quadratic nonlinear media. The solitons in quadratic 

nonlinear media are studied in several areas of nonlinear 

optics such as optical routing, optical switching, lasers 

with quadratic nonlinear crystal and others [1, 15]. 

 

 

2. Governing equations 
 

For quadratic nonlinear media, with inter-modal 

dispersion (IMD) and spatio-temporal dispersion (STD) 

is given by 
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where, ),( txq  and ),( txr  represents the wave profile of 

the FH and SH components respectively. *q   represents 

conjugate of q . The independent variables are x  and t  that 

are spatial and temporal variables. The inclusion of STD, 

given by the coefficients of jb   for ,2,1j was suggested 

during 2012 [16, 17]. With inclusion of the STD, the 

governing NLSE becomes well-posed as opposed to the 

consideration of group velocity dispersion (GVD) alone, in 

which case, the model problem stays ill-posed [16, 17].  

Recently soliton solutions were obtained for quadratic 

nonlinear media in presence of GVD only [1] and with IMD 

and STD [15]. 

 

 

3. Admissible transformations 
 

To separate the real and imaginary parts, let us assume 

 
),(

1 ),(),( txietxPtxq                     (2-1) 

 
),(2

2 ),(),( txietxPtxr                    (2-2) 

where  

  txtx ),(                       (3) 

 

Here   is the frequency of the wave and   is the 

wave number of the soliton. Also,   is the phase constant. 

Substituting (2) into the system of equations (1) and 

decomposing into real and imaginary parts gives 

 



1348                                                  Sachin Kumar, Michelle Savescu, Qin Zhou, Anjan Biswas, Milivoj Belic 

 

0

)(

211
1

2

12

1

2

1

111

2

11














PPk
tx

P
b

x

P
a

cbaP 

        (4-1) 

 

0)2(

)1(

1
111

1
1












x

P
ba

t

P
b





             (4-2) 

 

0

)2442(

2

12
2

2

22

2

2

2

222

2

22














Pk
tx

P
b

x

P
a

cbaP 

 (4-3) 

 

0)24(

)12(

2
222

2
2












x

P
ba

t

P
b





         (4-4) 

 
For eliminating the imaginary parts let us assume 

following constraints  
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From (5), we have following restrictions on 

coefficients 
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The detail are analyzed from equation (29) in 

Section-4. With conditions (5) and (6), system of 

equations (2) reduces to 
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Now we will apply Lie classical method to the system 

(7). Roughly speaking an admissible transformation is a 

triple consisting of two fixed equations from a class and a 

point transformation linking these equations. The set of 

admissible transformations of a class of differential 

equations possesses the groupoid structure with respect to 

the standard composition of transformations [3, 14]. 

Therefore, we look for Lie symmetry operators of the form 
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where  ,  , 1  and 2  are infinitesimals that generate 

one-parametric Lie groups of transformations leaving 

equations from class (7) invariant.  

Applying the second prolongation Qpr )2(
 to system 

(7), we find that the coefficient functions ),,,( 21 PPxt , 

),,,( 21 PPxt , ),,,( 211 PPxt  and ),,,( 212 PPxt   must 

satisfy the symmetry condition 
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where 
xx

1 , 
xt

1 , 
xx

2 , 
xt

2  are infinitesimals [3, 14]. 

Substituting the value of  
xx

1 , 
xt

1 , 
xx

2 , 
xt

2 ,  and 

equating coefficients of derivative terms and powers of 1P , 

2P , we obtain 

)
2

(32
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where 1C , 2C  and 3C  are arbitrary constants. 

Corresponding vector fields are 
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We will consider following vector fields for 

reduction of system (7)  

(i) 3V  

(ii) 21 VV   

where   is real arbitrary constant. 

 

 
3. Reduced systems and exact solutions 
 

3.1 CASE-I (Vector field: 3V ) 

 
The similarity variable and the form of similarity 

solution is as follows: 

2t
b

a
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where   is new independent variable and F , G  are 

new dependent variables.  

Substituting (12) in system of equations (7), we 

obtain following ordinary differential equations (ODEs) 
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where ’ denotes derivative with respect to  .  

This ODE system can be further solved to give 

solution 
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Corresponding solutions of main system (1) is given 

by 
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where   and   are given by (5) with (6). 

 

 

3.2 CASE-II (Vector field: 21 VV  ) 

 

Similarity variables are as follows 
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where   is new independent variable and F , G  are new 

dependent variables.  

Substituting in (7), we obtain following system of ODEs 
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where ’ denotes derivative with respect to  .  

Employing the conditions 
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we obtain the following solution of (17) 
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Corresponding solutions of main system (1) with (18), is 

given by 
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where   and   are given by (5) with (6). 

 

 
4. Singular solitons 

 
This section will retrieve exact singular 1-soliton 

solutions to the model (1). It must be noted that singular 

solitons of the first type was reported during 2014 [15]. 

This paper will now report singular solitons of the 

second type. With the transformation (6), in place, the 

model, given by (6) reduces to 

 

xxtxxt qirqkqcbqaqiq  *22 11   (21) 

 

xxtxxt riqkrcbrarir  2

22         (22) 

 
This pair of equations (21) and (22) will now be 

solved for singular 1-soliton solution. The starting 

hypothesis is [15]: 
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for 2,1l . Here lA , lB  and B  are free parameters 
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)( vtxB                             (24) 

 
Substituting the hypothesis (23) into (21) and (22) 

the real part relations are 
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respectively. Next, the imaginary parts give the speed of the 
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respectively from the two components. Equating the speed 
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It is this equation (29) that leads to the conclusions 

given by (6). Balancing principle applied to (25) and (26) 

yields 
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from the first component (25). The coefficients of linearly 
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Next equating the speed of singular solitons from 

(31) and (33) leads to the ratio of free parameters lB  for 
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which again prompts the constraint given by 
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Now, equating the speed of the soliton from (27) 

and (31) leads to the free parameter B  as 
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Similary equating the speed of the soliton from (28) 

and (33) also yields (38) and (39). 

Now, substituting the wave number   from (32) 

into (38) gives 
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with the constraint 
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From real part equations (25) and (26) subtracting the 

constant terms leads to 
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This leads to the conclusion, from the coefficients of 

independent parameters, and after implementing (41) and 
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Hence, for singular 1-soliton NLSE with quadratic 

nonlinearity, the model equations (21) and (22) further 

simplify to 
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where the free parameters, speed and wave numbers are 

explicitly determined. The results of this section are eerie 

similar to the results for topological solitons that were 

reported during 2014 [15]. However, these are singular 

solitons while previously reported results were topological 

solitons. Therefore, mathematically speaking, the functions 

are different with the same structure of the results. 

 

 

5. Conclusions 
 

This paper studied optical solitons with quadratic law 

nonlinear medium. First Lie symmetry analysis retrieved a 
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couple of solutions to the model. Later, ansatz approach 

obtained singular soliton solution to the model.  It needs 

to be noted that this is a different kind of singular 

solitons as compared to the one that was reported earlier 

during 2014 [15]. The constraint conditions for the 

existence of these soliton solutions are also given. This 

problem will be studied in future with several additional 

integration techniques. These include Kudryashov’s 

method, G’/G-expansion scheme and others. The results 

of these research will be reported soon. 
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